OSTEOARTHRITIS AND ITS MODERN MANAGEMENT

- FOCUS ON THE LOWER LIMB

Ashtin Doorgakant FRCS (Tr & Orth) Health Education North West, UK

ABOUT MYSELF

- I declare no conflict of interest in this presentation
- Mauritian born and educated up to A-level
- Undergraduate studies- University of Newcastle, UK
- Early Postgraduate education North East & North West UK
- 2 years out of training volunteering in Malawi
- Higher Postgraduate education North West UK (Mersey)
- FRCS (Tr & Orth) Nov 2016
- Due to complete training Aug 2018
- 1 year fellowship in foot and ankle surgery from Aug 2018 Sheffield
- Plan to return to Mauritius afterwards

ACKNOWLEDGEMENTS

- IBL
 - Thuldeo, Nadeem and Shivam
- Dr E Rajan
- Mrs A Hebe
- Mr M Doorgakant

and the family

BRINGS VALUE TO LIFE

Ē

OVERVIEW

- What osteoarthritis (OA) is
- Diagnosis
- General principles of management

- Focus:
 - OA hip
 - OA knee
 - OA ankle
- Summary

Introduce the orthopaedic taxonomy used in OA

OSTEOARTHRITIS

- "wear and tear"
- "degenerative non-inflammatory condition of hyaline cartilage"
- "ageing of the joints"

In reality:

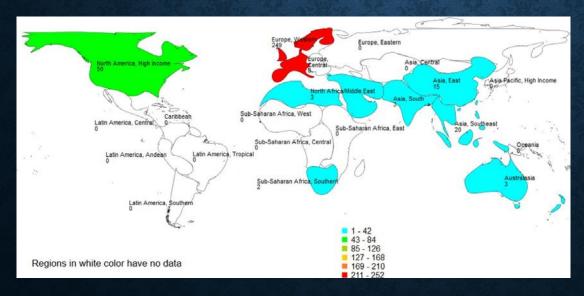
- OA is histologically different from ageing
- OA involves whole joint- cartilage, bone, synovium and capsule
- OA involves some inflammatory pathways

DEFINITION OF OSTEOARTHRITIS

Disorder of synovial joints that is characterised by

- focal areas of damage to the articular cartilage
- remodelling of underlying bone and the formation of osteophytes
 and
- mild synovitis

as defined by NICE

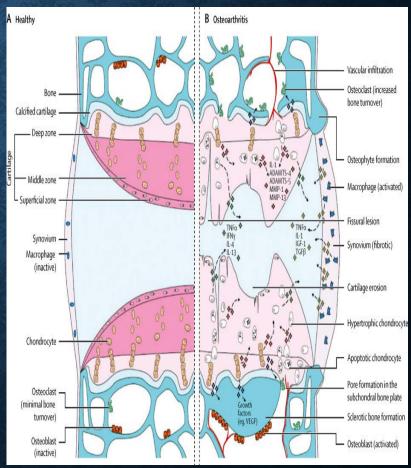


EPIDEMIOLOGY

Commonest chronic MSK condition

"WHO 2010: among 289 diseases, OA now 11th cause of yrs lived with disability, up from 16th within only 10 years"

- Age (80-90% >65 have radiographic evidence OA)
- Gender (female > male over 55)
- Race & geography (unclear)



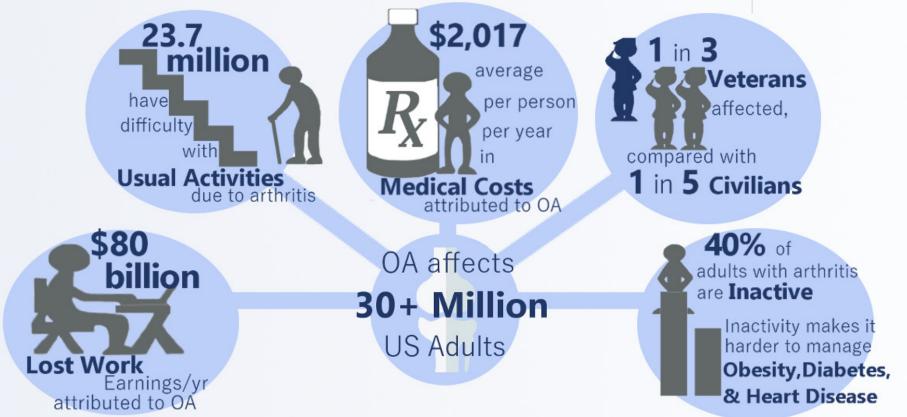
Ē

PATHOPHYSIOLOGY

• Early:

- Swelling of cartilage (hypertrophy)
- Increased proteoglycan synthesis (repair response to cartilage damage)
- Late:
 - PG level drops
 - Softening oedematous cartilage
 - Reduced elasticity
 - Compromised joint surface integrity
 - Loss of joint space- worst in high load areas
 - Denuded bone becomes denser due to high stress
 - Cysts due to synovial intrusion through cracks or mini infarcts
 - Osteophyte formation

AGEING v OA

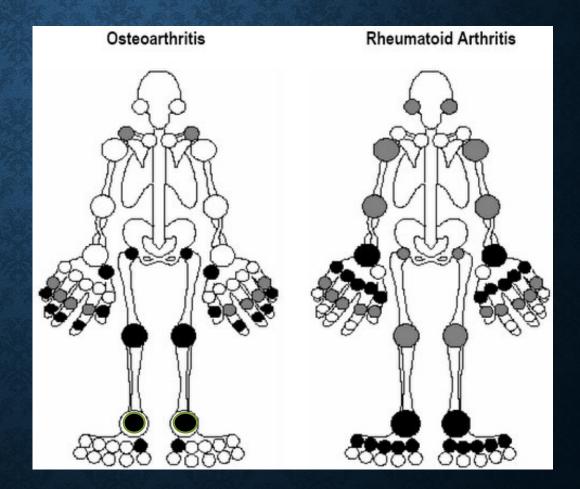

	Aging	Osteoarthritis
Water Content	Decreased	Increased
Collagen	Same	Disorganized
Proteoglycan Content	Decreased	Decreased
Proteoglycan Synthesis	Same	Increased
Chondrocyte Size	Increased	Same
Chondrocyte Number	Decreased	Same
Modulus of Elasticity	Increased	Decreased

Ageing predisposes to OA but doesn't automatically result in OA

IMPACT OF OA

OSTEOAR

The public health impact of Osteoarthritis OA



Life changing: Impaired social functioning/ Reduced autonomy/ Financial loss*/ Depression Society wide consequences

OA DISTRIBUTION

- Large weight-bearing jts
- Hands
- 1st MTPj/ CMCj
- Spine

• Different from inflammatory picture

CAUSES OF OA

• Primary – "idiopathic"

V

Secondary

Both present in identical way

SECONDARY OA

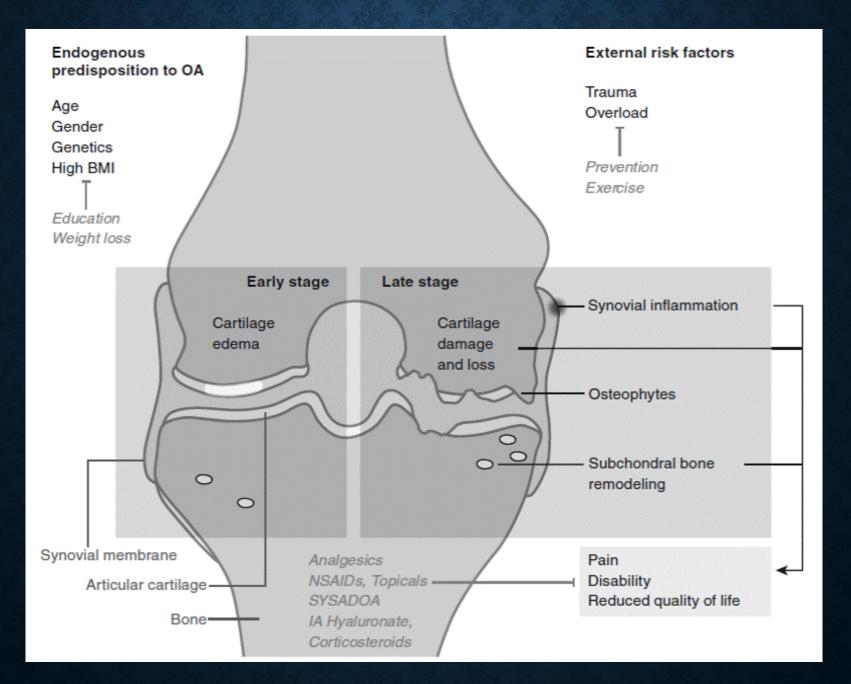
Physical

- Abnormal joint loading
- Deformity
- Post traumatic
- Joint instability (cause AND effect of OA)
- Previous surgery (meniscectomy)
- (Physical lifestyle)
- (Obesity)
- (Age)

Medical

- Rheumatoid/ inflammatory arthritis
- Skeletal dysplasias
- Crystal arthropathies
- Metabolic
- Haemophilia, Sickle cell, Thalassaemia
- Neuropathic (Charcot)
- Post septic
- Avascular necrosis
- Paget's
- Acromegaly
- DDH/ SUFE/ Perthes

Ē


OA DIAGNOSIS

- Clinical
- Radiological
 - X-ray
 - WEIGHT BEARING VIEWS
 - CT
 - MRI
 - Bone scan
 - USS ?
- Laboratory ?

Typical XRAY findings

- Loss of joint space
- Subchondral sclerosis
- Osteophytes
- Subchondral cysts

Symptom severity ≠ *radiological severity*

CLINICAL FEATURES OA

History

- Pain (typically activity related)
- Stiffness (morning)
- Swelling
- Neurology (spine OA)
- LOSS OF FUNCTION

Examination

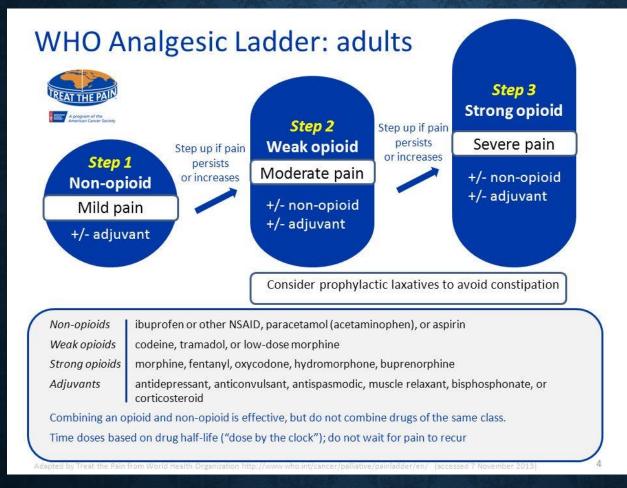
Look - Feel - Move

- Deformity/ swelling
- Joint line tenderness
- Crepitus
- Reduced ROM
- Instability
- Abnormal gait
- Neurovascular impairment
- Reduced Function

GENERAL PRINCIPLES OF OA MANAGEMENT

Non-surgical v Surgical

- Non-surgical:
 - Lifestyle modification
 - Pharmacological
 - Injections
 - Physio/Occupation therapy
 - Braces/ orthotics
 - Alternative therapy
- Surgical:
 - Joint preserving
 - Joint sacrificing



LIFESTYLE MODIFICATION

• Stop doing what hurts!

- Patient education
- Weight loss
- Exercise
- ?Application of heat and cold

PHARMACOLOGICAL

- Topical NSAIDS
- Others: Chondroitin sulfate, glucosamine, cod liver oil, vit D
- Injections

INJECTIONS

• Less effective as disease progresses

E.g.

- Steroids + LA
 - Depomedrone, Triamcinolone
- Viscosupplementation
 - Hyaluronic analogues
- Plasma-Rich-Protein

Physio

• Some effectiveness

Different modes

- Strength/ resistance training
- Agility training
- General exercise
- Hydrotherapy

Patient education

Can help delay surgery

OT

- Aids
- Adaptations to help cope

BRACES / ORTHOTICS

E.g.

- Walking aids
- Insoles/ shoe modifications
- Corrective appliances

Work by:

- Reducing unwanted (painful) movements
- Assisting in correction of flexible deformities

May slow progression of OA

ALTERNATIVE THERAPIES

- TENS/ Neuromuscular electric stinulation
- Pulse electromagnetic field therapy
- Therapeutic ultrasound
- Manual therapy
- Whole body vibration
- Heat/ infrared therapy
- Yoga
- Taichi
- Acupuncture

JOINT PRESERVING SURGERY

- Dedribement
- Cartilage regeneration
- ?? Arthroscopic washout
- Re-alignment osteotomies

• Arthrodiastasis

JOINT SACRIFICING

- Fusion
- Arthroplasty
- Excision arthroplasty

HIP OSTEOARTHRITIS

AETIOLOGY / DIFFERENTIALS

• Idiopathic v previous predisposing diagnoses:

DDH, Perthes, SUFE, AVN, Trauma, Septic arthritis

• Differentials:

- Femoral acetabular impingement syndromes
- Labral tears
- Back / Knee OA
- Inflammatory/ crystal arthropathy
- Transient osteoporosis

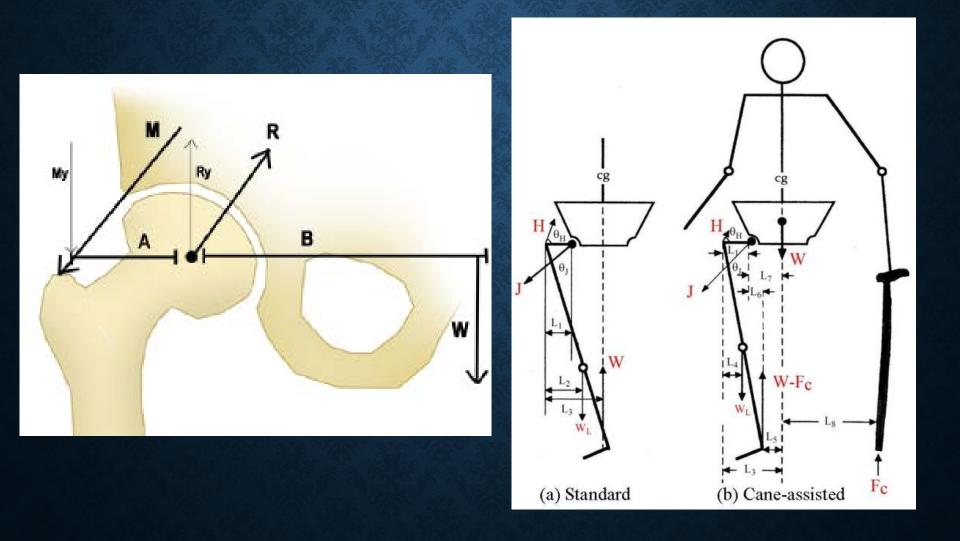
DIAGNOSIS

Hx

- Pain
 - Sometimes referred to knee
 - Can be referred from back
 - Night pain \rightarrow ?surgery
- Stiffness
- Limp
- Reduced function
 - Unable to reach foot
 - Sexual dysfunction

• Scars

O/E


- Deformity from previous Δ
- Scoliosis
- Limited tenderness
- Leg length discrepancy?
- Reduced ROM
 - Pain in groin
- Antalgic gait
- Trendelenburg gait

NON SURGICAL TREATMENT

- Analgesia
- Lifestyle changes- weight loss
- Injection
 - Diagnostic e.g. for troch burs
 - Therapeutic into joint
 - Steroid + LA
 - X-ray guided with contrast

- PT/ OT
- Walking aids
 - 1 stick in opposite hand
 - Carry (light) shopping in same hand
- Zimmer frame
- Scooter

FREE BODY DIAGRAM

SURGERY

- Mainstay is hip arthroplasty
- Cemented v uncemented
- Resurfacing v THR
- Different bearing materials
 - Metal on poly
 - Ceramic on poly
 - Metal on metal
 - Ceramic on ceramic
 - Dual mobility
- Different approaches
 - Posterior
 - Lateral
 - Anterolateral

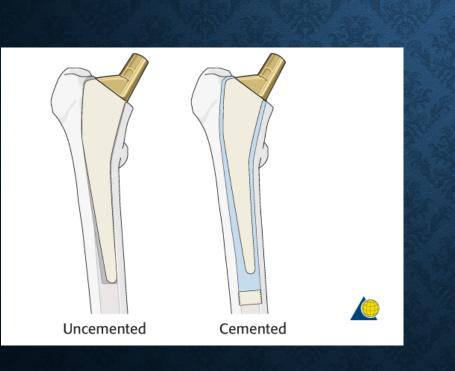
- *Hip arthroscopy for alternate diagnoses*
- Core decompression/ grafting for early AVN
- Girdlestone as salvage option

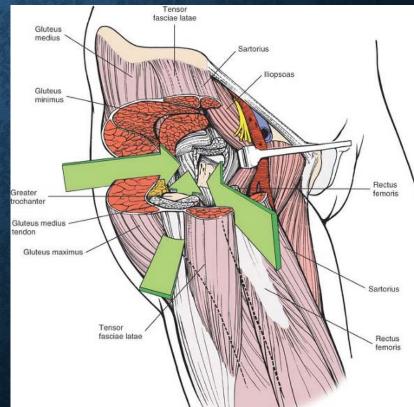
Ball 1

Cemented

Taper-slip (Force-closed) Example: Exeter

Composite Beam (Shape-closed) Example: LubinusSP2




Uncemented

Fully coated Example: Zweimuller Proximally coated Example: Accolade

KNEE OSTEOARTHRITIS

AETIOLOGY / DIFFERENTIALS

- Idiopathic v previous predisposing diagnoses:
- Trauma- Meniscal injury/ meniscectomy, Ligament injury, OCD, Infection- Septic arthritis; Malalignment- post-traumatic, Blount's

- Differentials:
 - Meniscal injury
 - Tendinopathies
 - Back/ Hip OA
 - Inflammatory/ crystal arthropathy
 - SONK

DIAGNOSIS

Hx

• Pain

- Sometimes referred to hip/ leg
- Can be referred from back/ hip
- Night pain → surgery
- Stiffness
- Limp
- Reduced function
 - Unable to kneel (pray?)
 - Stairs

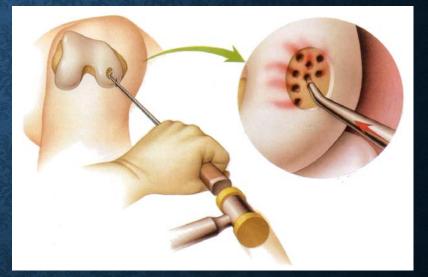
O/E

- Scars
- Deformity
 - Varus/ Valgus
 - Fixed flexion deformity
 - Tibial/ femoral mal-alaligment
- Quadriceps wasting
- Tenderness
 - Define compartment
- Crepitus
- Reduced ROM
- Instability
- Antalgic gait
- Valgus/ Varus thrust
- Neurovascular (CPN valgus knee)

NON SURGICAL TREATMENT

- Analgesia
- Lifestyle changes- weight loss
- Injection
 - Diagnostic
 - Therapeutic into joint
 - Steroid + LA
 - Viscosupplements
 - Can be done in clinic

- PT/ OT
- Walking aids
 - Stick, crutches, Zimmer
- Off-loader brace
 - Corrects valgus / varus

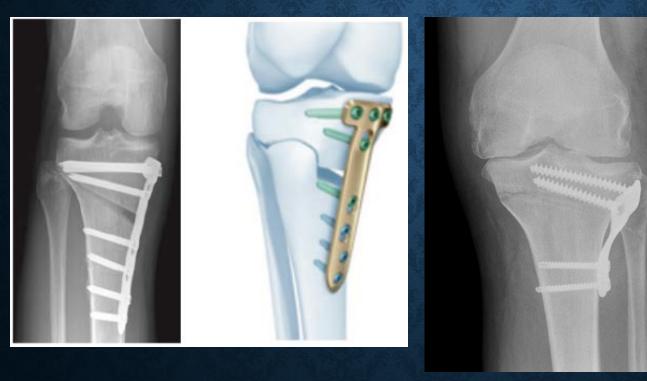


Ē

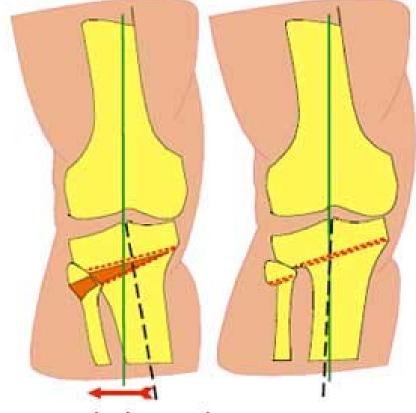
SURGERY- EARLY OA


- Cartilage surgery
 - Washout
 - Chondroplasty, micro-fracture
 - OATS, osteochondral allograft
 - ACI, MACI
- Re-alignment osteotomies
 - High tibial osteotomy
 - Distal femoral corticotomy

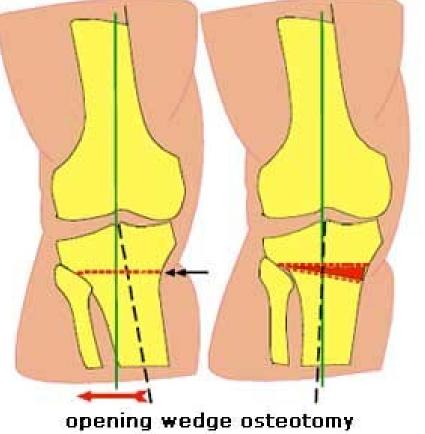
Medial or lateral; opening wedge or closing wedge Medial opening wedge HTO commonest

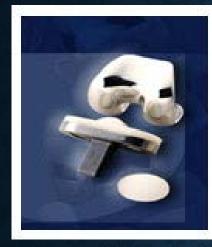


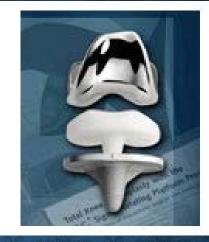
DCO


Medial opening wedge high tibial osteotomy

Lateral closing wedge high tibial osteotomy


Lateral opening wedge distal cortical (femoral) osteotomy


closing wedge osteotomy


SURGERY- ADVANCED OA

- Partial knee replacement
 - Lateral, medial, PF, Deuce
- Total knee replacement
 - Different interfaces
 - Cemented v uncemented
 - Fixed b mobile bearing
 - Different constraints
 - Cruciate retaining
 - Cruciate sacrificing (PS)
 - Semi-constrained (high post)
 - Fully constrained (hinged)
 - Patella resurfacing or not

Cruciate retaining modular

All Poly + patella button

Mobile bearing Unicompart mental

Fully constrained knee

Partial Knee Replacements

Bicompartmental

Patellofemoral (top)

Medial (inside)

Lateral (outside)

With or without patella resurfacing

ANKLE OSTEOARTHRITIS

AETIOLOGY / DIFFERENTIALS

- Rarely idiopathic
- Previous predisposing diagnoses:
- Trauma- fracture, ligament injury, OCD; AVN; Tibialis posterior dysfunction; Congenital- CTEV, CVT; Infection- septic arthritis; Malalignment- post-traumatic
- Differentials:

OCD, tarsal tunnel syndrome, Tendinopathies; inflammatory/ crystal arthropathy

DIAGNOSIS O/E

Hx

• Pain

- Worse on flat or uneven surfaces?
- Stiffness
- Limp
- Reduced function
 - Unable to walk
- Diabetes?

Key is to recognise where the arthritis is: Ankle +/- subtalar +/- midtarsal jts

CT may be required

• Scars

- Deformity
 - Hindfoot malalignment
 - Deformity higher up
- Muscle wasting
- Crepitus
- Tenderness
- Reduced ROM .
- Ankle, subtalar, midtarsal jts

- Instability
- Gait
 - Antalgic
 - Externally rotated leg gait inb pure ankle OA
- Neurovascular assessment

NON SURGICAL TREATMENT

- Analgesia
- Lifestyle changes- weight loss
- Injection
 - Diagnostic
 - Therapeutic into joint
 - Steroid + LA
 - Xray guided without contrast

- PT/ OT
- Orthotics
 - Insoles
 - Custom shoes
- Walking aids
- Scooter

• ? PRP

SURGERY

Part joint involved

- Cheilectomy
 - Open v artho
- Cartilage regeneration (arthroscopic)
 - Debridement
 - ? Microfracture
 - OATS
 - ACI/ MACI

Whole joint involved

Fusion v Replacement

- Fusion \rightarrow High Demand pt
 - Ankle v TTC v Pantalar
 - Open v arthroscopic
 - Antr v lateral
 - Screws v plate v nail (TTC)
 - Cross screws v parallel
- Replacement \rightarrow Low Demand pt
 - Modern 3 component uncemented

Realignment osteotomy? Arthrodiastasis?

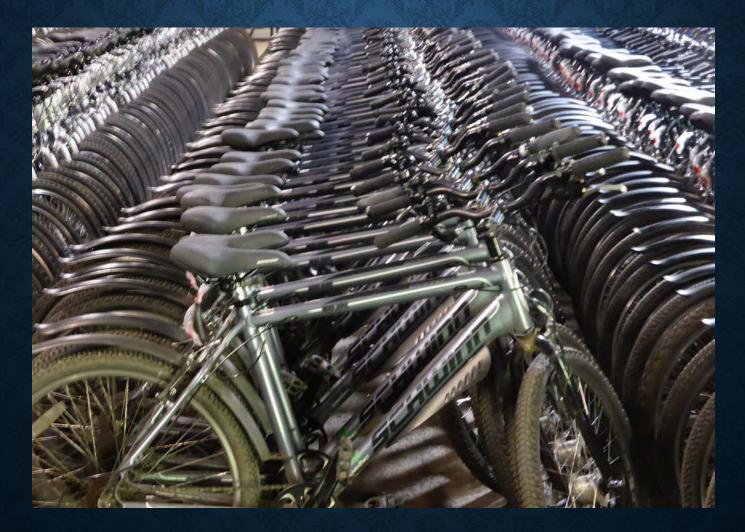
Ankle arthroscopy

Ankle OA with and without subtalar involvement

Arthrodesis v Arthroplasty

FUSIONAnklevTTCvPantalar

Ħ


SUMMARY

- Osteoarthritis is common
- It's a major health burden
- It affects WB joints commonly
- Taxonomy
- There's no one-size-fits-all approach
- Each joint is unique
- Each patient is unique

• Each treatment should also be unique!

REFERENCES

- BENNELL, K. L., HUNTER, D. J. & HINMAN, R. S. 2012. Management of osteoarthritis of the knee. *BMJ*, 345, e4934.
- BHATIA, M. 2014. Ankle arthritis: Review and current concepts.
- BLOCH, B., SRINIVASAN, S. & MANGWANI, J. 2015. Current Concepts in the Management of Ankle Osteoarthritis: A Systematic Review. *J Foot Ankle Surg*, 54, 932-9.
- HUSSAIN, S. M., NEILLY, D. W., BALIGA, S., PATIL, S. & MEEK, R. 2016. Knee osteoarthritis: a review of management options. Scott Med J, 61, 7-16.
- MURPHY, S. L., ROBINSON-LANE, S. G. & NIEMIEC, S. L. S. 2016. Knee and Hip Osteoarthritis Management: A Review of Current and Emerging Non-Pharmacological Approaches. *Current Treatment Options in Rheumatology*, 2, 296-311.
- NEWBERRY, S. J., FITZGERALD, J., SOOHOO, N. F., BOOTH, M., MARKS, J., MOTALA, A., APAYDIN, E., CHEN, C., RAAEN, L., SHANMAN, R. & SHEKELLE, P. G. 2017. Treatment of Osteoarthritis of the Knee: An Update Review. Treatment of Osteoarthritis of the Knee: An Update Review. Rockville (MD).
- ROBINSON, A. H. N. & KEITH, T. 2016. Osteoarthritis of the ankle. Orthopaedics and Trauma, 30, 59-67.
- SALMON, J. H., RAT, A. C., SELLAM, J., MICHEL, M., ESCHARD, J. P., GUILLEMIN, F., JOLLY, D. & FAUTREL, B. 2016. Economic impact of lower-limb osteoarthritis worldwide: a systematic review of cost-of-illness studies. *Osteoarthritis Cartilage*, 24, 1500-8.
- SAMSON, D. J., GRANT, M. D., RATKO, T. A., BONNELL, C. J., ZIEGLER, K. M. & ARONSON, N. 2007. Treatment of primary and secondary osteoarthritis of the knee. *Evid Rep Technol Assess (Full Rep)*, 1-157.
- VAISHYA, R., PARIYO, G. B., AGARWAL, A. K. & VIJAY, V. 2016. Non-operative management of osteoarthritis of the knee joint. *J Clin Orthop Trauma*, 7, 170-6.

ARTHROSCOPIC WASHOUT?

- KIRKLEY, A., BIRMINGHAM, T. B., LITCHFIELD, R. B., GIFFIN, J. R., WILLITS, K. R., WONG, C. J., FEAGAN, B. G., DONNER, A., GRIFFIN, S. H., D'ASCANIO, L. M., POPE, J. E. & FOWLER, P. J. 2008. A randomized trial of arthroscopic surgery for osteoarthritis of the knee. *N Engl J Med*, 359, 1097-107.
- MOSELEY, J. B., O'MALLEY, K., PETERSEN, N. J., MENKE, T. J., BRODY, B. A., KUYKENDALL, D. H., HOLLINGSWORTH, J. C., ASHTON, C. M. & WRAY, N. P. 2002. A controlled trial of arthroscopic surgery for osteoarthritis of the knee. N Engl J Med, 347, 81-8.
- SIHVONEN, R., PAAVOLA, M., MALMIVAARA, A., ITALA, A., JOUKAINEN, A., NURMI, H., KALSKE, J., JARVINEN, T. L. & FINNISH DEGENERATIVE MENISCAL LESION STUDY, G. 2013. Arthroscopic partial meniscectomy versus sham surgery for a degenerative meniscal tear. N Engl J Med, 369, 2515-24.
- THORLUND, J. B., JUHL, C. B., ROOS, E. M. & LOHMANDER, L. S. 2015. Arthroscopic surgery for degenerative knee: systematic review and meta-analysis of benefits and harms. *BMJ*, 350, h2747.